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1 Introduction

In the biological sciences, arguably moreso than in any other discipline, the amount
of data is available to researchers is exploding exponentially. Making this information
available in a consistent, accessible format is itself a non-trivial task, and categoriz-
ing or classifying the data in meaningful ways is especially daunting. Laboratory
experiment and human review will likely continue to represent the gold standard for
reliability in these classification tasks, but these processes are time-consuming and
expensive. Consequently, the development of automated replacements for these is an
extremely important and widely-studied problem. Due to the scope and complexity of
the data in question, statistical and machine learning algorithms are a natural choice
for these types of analyses. Support vector machines are a specific type of machine
learning algorithm that are among the most widely-used for many statistical learning
problems, such as spam filtering, text classification, handwriting analysis, face and
object recognition, and countless others. Support vector machines have also come
into widespread use in practically every area of bioinformatics within the last ten
years, and their area of influence continues to expand today. This paper will present
a brief description of support vector machines themselves, followed by a comprehen-
sive study of how SVMs have been and are being used in computational biology, and
finally a brief discussion of some novel variations on SVM classification as well as the
future of SVMs in bioinformatics.

2 Support Vector Machines and Supervised Learning

Most of the problems discussed in this paper will involve “classification” of data, i.e.
placing items into categories based on some set of features which describe the data.
Support vector machines in particular were designed as a tool to solve supervised
learning classification problems. Supervised learning is an area of machine learning
in which we are given some “training set” of data for which we know a priori the
appropriate classifications. Using these labeled items, a statistical model is developed
to distinguish between positive and negative examples, after which any new data point
can be classified according to this model.

The support vector machine algorithm classifies input using a fundamentally geo-
metric idea. The ultimate goal of the support vector machine algorithm is to express
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the data as elements of some vector space, and then construct a hyperplane (or hy-
perplanes) that appropriately separates the data. For a binary classification problem,
this corresponds to finding a hyperplane such that on side contains all the examples
from one category (let yi denote the label of the ith data point, and call these points
{xi|yi = 1}), and the other side contains all the points for which yi = 0. Typically,
when there are more than two categories, the problem is solved by reduction to a
number of simpler binary problems. Once this hyperplane has been constructed, the
algorithm makes predictions by checking which side of the hyperplane a test vector
lines on; if it lies on the “1” side, it is put in that category. Notice that there could
be infinitely many such separating hyperplanes; in this case, it chooses the optimal
one based on the idea of maximizing the “margin” of the data, i.e. the distance from
the decision boundary. In general, learning algorithms are evaluated based on their
generalization error, or the percentage of a previously unseen data set that is misclas-
sified. Maximizing the classification margin provides the best chance that new points
will lie on the appropriate side of the boundary.

Since our desired decision boundary is linear, we can think of predictions as taking
on the form

h(x) = sign(wTx+ b),

where w is some vector of “weights,” and b is an intercept term. Clearly, the linear
equation wTx + b = 0 defines a hyperplane in the vector space inhabited by our
feature vectors xi. Thus, by examining whether wTx + b is greater or less than zero
at a point x, we are able to determine mathematically whether a point in our high-
dimensional feature space is “above” or “below” the separating hyperplane. Recall
that we are interested in maximizing the margin between the data and the boundary:
there are many intuitive ways to express this as an optimization problem, but using
some algebra, the problem can be written as

min
w,b

1

2
‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀ i.

This is a convex quadratic program, and can be solved by any number of commercial
optimization software packages. However, it is often easier to solve an equivalent
problem

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj(x
i)Txj

s.t αi ≥ 0 ∀ i,
m∑
i=1

αiy
i = 0,

which can be derived using some ideas from optimization theory (Lagrange duality,
the Karush-Kuhn-Tucker conditions, etc.). It is also straightforward to change the
optimization problem to allow for cases in which the data cannot be perfectly sepa-
rated, or in which certain outliers change the classifier more than is desired. These
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modifications do significantly change the overall complexity of the implementation or
the computation.

The above constrained optimization is a problem in m variables, where m is the
size of the training set. Anyone familiar with mathematical programming or any other
large-scale computation should also be familiar with the curse of dimensionality and
its implications for this algorithm. In order to obtain high accuracy and robustness, it
would be beneficial to consider as many training examples as possible. However, the
resulting increase in the dimensionality of the problem will greatly slow the conver-
gence of the above optimization; in general, the time required for such a computation
is in most cases Ω(m2), although for some specialized inputs the required time can
be as low as Θ(m2).

One additional advantage of support vector machines is their compatibility with
the so-called “kernel trick,” which involves replacing the vector products from the
original formulation with some new (non-linear) kernel function. The result is that
points are compared in some higher-dimensional space, and so the model (and re-
sulting decision boundary) will appear non-linear in the input space. This results
in a greatly increased variety of possible classifiers, as well as far more potential
for complexity and accuracy. In general, the most popular choices of kernel func-
tions are the polynomial kernel k(x, x′) = (x · x′)d and radial or Gaussian kernel
k(x, x′) = exp(−c‖x− x′‖2). The choice of the optimal kernel for a given problem is
a nontrivial decision in itself, and uses of the kernel trick specific to computational
biology will be discussed in subsequent sections.

3 Computational Biology Applications

3.1 Protein Similarities and Homologies

Support vector machines are a robust and powerful classification method, but only
within the last ten years or so have they started to see widespread use in the biolog-
ical sciences. One of the areas in which SVMs first gained significant traction was
the identification of similar protein sequences and homologies. Algorithms for these
tasks have existed for dozens of years, some of which first compute optimal sequence
alignments (e.g. the Smith-Waterman dynamic programming algorithm), and others
that use heuristic approximations (BLAST, FASTA, etc.). More complicated meth-
ods include profiles, PSI-BLAST and hidden Markov models, all of which construct
some model based on aggregate statistics from a number of related sequences, and
use the result as a reference against which other proteins can be compared. These
algorithms provide broader and more accurate results, returning more true positives
and a smaller fraction of false positives, but they still miss many more distant (but
still relevant) relationships and homologies.

A major breakthrough was provided by Jaakkola et al. in 1999 with their intro-
duction of the Fisher kernel method of detecting remote protein homologies[46]. This
method expands on the standard hidden Markov model-based search by incorporat-
ing a support vector machine classifier into the identification process. Using a HMM
representation of a given protein family, we can produce some probability estimate
that a test protein belongs to that family. However, such a predictor can easily fail
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if the underlying model is not perfectly accurate, or if the set of training data is
insufficiently large. On top of these probabilities, the Fisher kernel method makes
use of a quantity called the Fisher score, given by

Ux = ∇θ logP (x|H1, θ),

i.e. the gradient of the log-likelihood of the probability that X is in the protein family
with respect to some parameter θ. These Fisher scores are themselves fixed-length
vectors which can be used as input to a standard SVM classifier. The SVM classifier
makes use of the standard Gaussian kernel

K(x, x′) = exp(− 1

2σ2
‖Ux − Ux′‖2),

but in the context of using Fisher scores, rather than some literal sequence encoding, it
is known as the Fisher kernel. The Fisher-SVM improved in many ways over previous
state-of-the-art remote homology identification schemes, and served as a springboard
for a great deal of related SVM research.

Another SVM algorithm, Liao and Noble’s SVM-pairwise, uses the results of a
pairwise sequence comparison algorithm (e.g. Smith-Waterman) in the same way
that Fisher-SVM uses a hidden Markov model as its underlying statistical basis[25].
The input vectors for the algorithm are constructed using the probabliity sores from
the comparison search, and a standard (Gaussian, polynomial, etc.) kernel is used to
compare two such vectors. The SVM-pairwise implementation benefits from the great
deal of work that has gone into fine-tuning Smith-Waterman and other algorithms,
but at a computational cost: computing the kernel matrix requires computing a priori
the similarity scores for each of the training data points. Using a heuristic algorithm
such as BLAST can decrease the computational burden of this step, but at a cost of
decreased accuracy. Its run-time notwithstanding, SVM-pairwise is a very effective
algorithm for remote homology detection: according to Liao and Noble, it improves
greatly on both PSI-BLAST and SVM-Fisher in classifying previously-unseen families.

Just as there are many different kernels that one must consider in implementing a
classification algorithm, there are also countless ways to represent an alphabetical or
otherwise non-numeric item as a vector quantity to which a Support Vector Machine
can be applied. One such technique is the so-called “composition method,” which
represents a protein sequence by a vector of twenty amino acid frequencies (or a
DNA sequence by a vector of four nucleic acid frequencies). Ding and Dubchak
showed that, using a variety of kernels (in particular polynomial and Gaussian), SVMs
using this method of feature representation performed well in protein fold recognition
experiments, and greatly ourperformed comparable neural networks[14]. Ding and
Dubchak also suggested novel methods of partitioning a multi-class classification into
several binary classification problems. The standard way of doing so, described in
their paper as the one-versus-others method, involves setting some class to be one
category and all other classes as the other, and making a binary prediction for each
such partitioning. However, the intricate relationships between categories can lead
to high numbers of false positives, which suggests other alternative schemes. In the
unique one-versus-others method, all of the positive results are then compared to
one another, resulting in one unambiguous prediction for the protein. In the all-
versus-all method, the algorithm trains a classifier for each pair of categories, and
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returns the category with the most “victories” as the prediction. The unique one-
versus-others method resulted in 13.6% improvement over the standard one-versus-
others predictions, and all-versus-all exhibited 24% improvement, according to their
experiments. However, these methods also come with a cost of increased computation:
unique one-versus-others requires the computation of K classifiers (where K is the
number of potential categories), and all-versus-all uses a daunting K2 −K classifiers
(each of which itself has quadratic complexity).

Although the simplicity of the composition method is an attractive feature from
an implementation persepective, in terms of results it is less desirable. The reduc-
tion of a protein sequence of hundreds or thousands of amino acids to a vector of
twenty frequencies disregards a huge quantity of information, including any trace of
the proximities of various amino acids within the chain. A more complex means of
representing and comparing proteins is given by motif-based methods. In 2001, Lo-
gan et al. proposed a high-dimensional protein representation consisting of similarity
scores drawn from the BLOCKS motif database[4]. These feature vectors are then
compared and classified using normal SVM techniques (Logan et al. make use of the
Gaussian kernel).

The motif-based representation approach was improved upon by Ben-Hur and
Brutlag in 2003[4]. Their implementation instead used the eBLOCKS motif database,
which includes on the order of half a million motifs. This is far more than Logan’s
implementation made use of, and would make for far too high-dimensional a problem if
used in the same way. However, using a vector representation would also be extremely
wasteful, since a sequence typically matches only a handful of motifs. Here the
kernel trick once again comes into play: for the computation of the model, and for
making classifications, it is only necessary to compute the kernel function of two input
vectors; the vectors themselves need never be manipulated or even stored. Using a
trie structure, Ben-Hur and Brutlag were able to reduce the computation time of
the motif content of a sequence to O(m), where m is the length of the sequence.
The resulting motif-based classifier provides significant improvement over previously-
described methods.

String kernels are a type of kernel which has been used historically for text classi-
fication but has also seen use in homology detection. Fundamentally, string kernels
represent the data using features consisting of substrings from the text or protein
sequence in question. The most comprehensive such representations would include
every substring as a feature, but this is in almost all cases computationally infeasi-
ble. Thus, some manageable portion of this power set is instead included as possible
features, and the kernel function compares the relative occurence of these subtrings
within the sequences. Eskin et al. proposed the so-called “spectrum kernel” as one
solution to this problem: for the feature vector consists of all possible k|A| subsets of
length k for some pre-determined k, drawn from the alphabet A[8]. In the case of
k = 1, this scheme is identical to the composition method. As in the case of Ben-
Hur and Brutlag’s motif kernel, storing the feature vectors for all the data is almost
certainly impractical, but computing the kernel function of two inputs can be done
quickly using tries.

The basic idea of the string kernel is an appealing simple one: in some sense we
are comparing the sequences as directly as possible by examining their string repre-
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sentations, and in doing so we discard as little proximity data and other information
as possible. There have been many other attempts made to implement variations on
this simple string kernel idea. The mismatch kernel was presented by Leslie et al. as
an extension on the spectrum kernel: it uses the same structure for its features, but
also counts as matches any substrings which are dislike in at most M places, for some
threshold M [9]. Leslie and Kuang also published another extension which builds on
the idea of the mismatch kernel and introduces the gappy kernel, the substitution ker-
nel, and wildcard kernels. The functions of these kernels are rather self-explanatory:
the gappy kernel allows matches between strings with up to α gaps inserted (for some
tolerance α); the substitution kernel allows mismatches, but only between certain sub-
sets of amino acids; and the wildcard allows for up to M occurences of the character
∗ in an alignment, and counts two strings as matching as long as no two unlike non-∗
characters are aligned[22]. All of these methods, along with the mismatch kernel, are
computable in linear time, allowing for an enormous variety of features.

One potentially major paradigm shift is exemplified by the cluster kernel method.
Clustering is an unsupervised learning technique that arranges unlabeled data into
k distinct subsets; the optimal value of k can be determined through various cross-
validation procedures. Using clustering techniques, Weston et al. (among many other
groups) were able to incorporate unlabeled protein sequences into their underlying
statistical model, and thereby greatly increase the scope of the resulting matches. The
resulting algorithm can no longer be classified as supervised learning because of the
inclusion of unlabeled data, so it is instead commonly referred to as “semi-supervised
learning.” This type of algorithm can be applied across many areas of computational
biology, and is not unique to homology detection. The clustering process requires
a great deal of computation and matrix manipulation, but recent implementations
(including those by Weston et al.) have brought this down to practical levels, and their
algorithm is able to achieve accuracy on par with other state-of-the-art methods[47].

In addition to the aforementioned (and other) basic techniques of classification,
there are countless possible hybrid approaches which combine aspects from multiple
methodologies. One such recent algorithm was developed by Kuang et al.: the basic
idea is the same as that of the string kernel, in that similarity is computed by mea-
suring the number of matches between subsets of fixed length k[38]. However, this
algorithm also makes use of an underlying probabilistic profile structure, generated
e.g. by PSI-BLAST. Using these probabilities allows for more precise string-based
comparisons (compared to the spectrum kernel method and its derivatives): rather
than accepting any or no mismatches, we can weight the mismatches according to the
corresponding transition probabilities from the PSI-BLAST model.

One more hybrid method was published by Damoulas and Girolami in 2008[12]. It,
too, uses substrings and string kernels as its representation and comparison methods,
but it also draws from Ding and Dubchak’s insight regarding the effectiveness of all-
versus-all training. In Ding and Dubhack’s paper, they required the computation of
K ∗ (K − 1) distinct classifiers, one for each pair of possible categories. Damoulas
and Girolami manage to bypass this step by embedding each object description into
a kernel space, and using the resulting similarity metrics to combine this information
into one composite kernel space. Using this new kernel space, only one classifier must
be trained in order to have all the predictive power of all-versus-all training, and thus
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the computational burden is greatly reduced.

3.2 Prediction of Protein Structure and Function

A related but non-identical problem to homology detection is that of predicting struc-
tural and functional characteristics for a previously unseen protein sequence. Unsur-
prisingly, SVMs have been utilized with great success in this area as well, and many
of the same types of models are used to solve both problems. One example of a nearly
identical implementation is that of Pavlidis et al., which uses the Fisher kernel in order
to classify genes according to promoter sequences[32]. Just as in Jaakkola’s original
implementation, the process is begun by identifying the promoter regions from some
target set of genes that can be labeled in advance. Next, a (motif-based) hidden
Markov model is trained using this set of sequence data, and the likelihood gradients
with respect to this model are used as the feature vectors to represent each target
sequence. The training data is then analyzed and a support vector machine trained
using the standard kernels (Gaussian, polynomial, etc.), and this model is then used
to make predictions for the new data. According to the authors, construction of re-
liably pre-classified training and tests sets for this problem is challenging (compared
to the homology detection problem), but nonetheless their results demonstrated the
potential for the expansion of SVM techniques into this area of research.

As a rule, algorithms that make predictions regarding protein structure and/or
function seem to be more specialized than similar algorithms for distant homology
detection. Whereas the algorithms from the previous section are all able to handle
practically any protein sequence, techniques from this section will tend to focus on
predicting one specific attribute. While these implementations may seem to be lack-
ing in robustness, they certainly match the accuracy of previously-discussed SVM
methods. One such algorithm is the SVM approach for predicting subcellular local-
ization of proteins from amino acid compositions, due to Hua and Sun[38]. Before
Hua and Sun’s paper, the state of the art prediction technique used neural networks
based on individual sorting signal predictions. Although this method provides good
results in the case where the gene 5’-regions are accurately aligned, this often cannot
be taken for granted, and thus the results of the neural network predictors cannot
be considered totally reliable. The SVM classifier, on the other hand, also produces
accurate results in the easy case when trustworthy alignments are available, but is
also far more robust to errors in the gene 5’-region annotation. The kernel func-
tion used by the algorithm is a simple composition kernel, i.e. a comparison of the
twenty-element frequency vectors correspondiing to each protein sequence. A similar
attempt by Park and Kanehisa using a slightly more complicated kernel, which took
into account amino acid pair and gapped pair compositions, performed even better
on the same data[34].

Some SVM methods have been able to make predictions that were previously
impractical or impossible. As of March 2009, Nassif et al. claimed to have developed
the first and only glucose-binding site classifier algorithm[28]. In their model, binding
cites are represented as spheres centered at the ligand. The components of the feature
vectors considered by the algorithm include atom type, functional group, residue,
charge, hydrophobicity, etc. Like most of the implementations seen so far, Nassif
et al. use the standard Gaussian kernel to evaluate similarity between vectors. If
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anything, this implementation is an especially straightforward application of SVMs:
the feature vectors are simply vectors of characteristics, and no unusual kernel trick
is applied, in contrast with sequence-based methods that had to deconstruct a length
sequence into a compact form in order to properly compare them. According to their
paper, Nassir et al. achieved 89.66% sensitivity and 93.33% specificity over their
chosen data set of glucose binding (positives) and non-glucose binding (negative)
sites, which seems to be a rather promising preliminary result.

There are dozens, if not hundreds, of similarly innovative results that one could
enumerate, so the focus here will be on newer results, e.g. from within the past year.
Cheng et al. proposed a new method, RNAProB, in December 2008 for predicting
RNA-binding sites of proteins using SVMs[10]. Their approach also incorporates
evolutionary information derived from PSSM profiles; on their data set, their imple-
mentation improved on state-of-the-art methods by about 5% in terms of both overall
accuracy and sensitivity. In May 2009, Nugent and Jones presented an “SVM-based
transmembrane protein topology predictor that integrates both signal peptide and
re-entrant helix prediction”[31]. By their benchmarks, this method achieves an un-
precedented level of both sensitivity and specificity, and they conclude that their
algorithm is ideally suited to identifying alpha-helical TM proteins throughout entire
genomes. In April 2009, Gao et al. developed a new method for predicting pro-
tein function changes associated with single amino acid substitutions, which they call
“substitution-matrix-based kernel SVM”[16]. Their kernel function is derived from
entries from the substitution score matrix BLOSUM62, which gave results comparable
to those of SNAP, a neural-network based algorithm designed for the same purpose.
However, the SVM method is easier to implement and learns more quickly than the
neural network approach. Qiu et al. published a new method for differentiating be-
tween enzyme and non-enzyme proteins in November 2008; their approach combines
support vector machines with the so-called discrete wavelet transform, resulting in
improved predictive performance[19].

Intuitively, if SVMs are well-suited to protein classification, then they should also
be effective tools for gene classification. A paper by Ma et al. from March 2009 lent
some credence to this intuition: they attempted to classify genes based on the relative
frequency of various codons, which composed their 59-dimensional feature vector[20]
Their technique proved to be more robust than the standard methods, in particular
for sequences of different lengths. In attempting to classify Human Leukocyte Anti-
gen (HLA) sequences into two major groups, HLA-I and HLA-II. Their SVM model
achieved 99.3% accuracy within this data set, and produced results consistent with
the known biological functions and molecular structures of the molecules. Another
gene classification algorithm, GISMO, by Krause et al., is a novel SVM-based method
of discovery and classification for prokaryotic genome sequences[23]. Although this
problem already has many effective known solutions, the authors feel that this algo-
rithm’s effectiveness, especially with regard to hard-to-classify short gene sequences,
improves sufficiently on existing methods that it warrants discussion as a replacement
for those well-established techniques.
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3.3 Microarray Data Analysis

Around the same time that SVMs began to be applied to protein homology searches,
they also started to be used in the analysis of microarray data. Microarray exper-
iments are used to measure changes in expression levels between different types or
populations of genes. The primary advantage of microarrays is that they can be used
to generate large quantities of data quickly and cheaply; their primary disadvantage
is that the resulting data is often quite noisy and hard to analyze. As with any
difficult problem with large amounts of disposable data, statistical learning methods
are a natural recourse, and SVMs are among the best-performing microarray analysis
tools to date. Brown et al., in 1999, were perhaps the first to publish an SVM-based
method for directly classifying genes based on microarray data[26]. The result of a
single microarray experiment is a list of n ratios of expression levels between samples
1 and 2, where n is the number of genes on the chip; the result of a series of m
experiments is then an n×m matrix, and each row of length m can be thought of as
a single data point. Brown et al. used these features along with both the polynomial
and Gaussian kernels. They trained their SVMs to distinguish between six functional
classes, and compared their performance with that of four other standard algorithms:
Parzen windows, Fisher’s linear discriminant, and C4.5 and MOC1 decision trees.
The accuracy of both kernels, in particular the Gaussian kernel, surpassed those of
all four alternative machine learning techniques in terms of overall error rate.

Another early application of SVMs to microarray data was that of tissue classifi-
cation, one that remains popular today. Numerous studies released around the same
time all achieved similarly encouraging results: Golub et al. in 1999 provided the
first tissue classification algorithm using SVMs, applied to the problem of differenti-
ating between two types of leukemia[42]. Their chosen feature set was based on the
signal-to-noise ratio

P (j) =

∣∣∣∣µA(j)− µ−1(j)

σA(j)− σ−1(j)

∣∣∣∣ ,
where ui(j) is the mean expression level for class i and σi(j) the per-class standard
deviation for gene j. The same feature set was used by Furey et al. in 2000 in their
classification of ovarian cancer tissues[26]. Both implementations outperformed Naive
Bayes and other standard machine learning techniques that were typically used for
these tasks.

As with the already-discussed protein sequence analysis methods, applications of
SVMs to microarray data continue to develop and achieve higher accuracy and ro-
bustness. One particularly intriguing innovation is due to Fotiadis et al. from 2008.
As previously described, the primary obstacle to overcome in interpreting microarray
data is its typically noisy, random quality. Fotiadis et al. used SVMs to classify
the pixels themselves, either into two groups (foreground and background) or three
(signal, background and artefact)[18]. This type of partitioning is typically done
using clustering and other unsupervised machine learning algorithms, but their im-
plementation manages to achieve extremely high accuracy. The pixels themselves are
represented by vectors of eleven distinct features, which measure the intensity of the
pixel, the intensity of its neighbors, and the variation within its neighbors, among
others. The classifiers are trained on already-classified data, and are tested on real
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new microarrays and simulated microarrays, along with various types of preprocess-
ing filters. In every case, the sensitivity of the classifiers exceeds 98%; the accuracy
and specificity exceed 99.8%.

Another interesting and recent development is due to Zhu et al. from 2009[52].
They approach the same standard binary classification problem as previous researchers,
but incorporate network-based information into their training programs. More specif-
ically, an underlying model of statistically significant subnetworks is constructed by
searching various subnetworks and assigning scores based on each subnetwork’s gene
expression level; the algorithm then identifies subnetworks that are capable of dis-
criminating effectively between categories. Using this information, a penalty term is
constructed which penalizes contradictions between some classification and the cor-
responding subnetwork model(s). This penalty term is added to the optimization
program itself, rather than incorporated into the feature space or the kernel function,
but the effect is still that the resulting classifiers are biased towards the underlying
subnetwork models. According to the authors, this technique improves the consis-
tency of the SVM classifier, and also allows for the extraction of higher-level biological
data which is available in other databases and formats.

Recently, another type of classifier has been gaining traction in microarray classifi-
cation, namely random forests. Random forests are another type of machine learning
algorithm which consist of many randomly-generated (by a bootstrap-like process)
decision trees. The output of the classifier for a given input is the most popular
result among all the random trees. In July 2008, Statnikov et al. released a compar-
ison of random forests and SVMs for classifying cancer tissue based on microarray
data[44]. According to the authors, random forests, despite their increasing popular-
ity, are still not as accurate as SVMs for typical microarray classification problems.
Their metric for the comparison was the area under the respective ROC curves, as
well as the relative classifier information (RCI), an entropy-based measure that can
be applied to multi-class decision problems. By these measures, SVMs outformed
random forests on nine of eleven and eleven of eleven tasks, respectively.

4 Pharmacology

On a different note, a less theoretical, more imminently practical application of ma-
chine learning techniques is the analysis of pharmaceutical data and prediction of
interactions between drugs and proteins. Since SVMs are widely used and successful
in predicting interactions and relationships between proteins and genes, it is no sur-
prise that similar techniques can be used in the design of drugs which are designed
to minimic or prevent such interactions. Burbidge et al. concluded that SVMs are “a
robust and highly accurate intelligent classification technique, likely to be well suited
to SAR [structural activity relationship] analysis,” even for large numbers of com-
pounds[36]. The data used by the group was the inhibition of dihydrofolate reductase
by pyrimidines; the activity was measured as the log of the equilibrium constant for
the association of the drug to dihydrofolate reductase. Using this measure, the re-
sulting classification problem is to determine, for all drugs m,n, the structure of the
function F (dn, dm), where F is an ordering function which equals 1 if the activity of
drug n is higher than that of drug m, and -1 if it is lower. Their results showed that
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SVMs were more accurate than every other algorithm studied with the exception of
a certain neural network, which had a prohibitively long training time.

A related problem was addressed by Warmuth et al.: given a large collection of
compounds, discover which bind to a molecule as quickly as possible[47]. Specifi-
cally, their algorithm employs “active learning,” which involves selecting a batch of
unlabeled components at each iteration to be test. This process mimics the typical
drug discovery process, which is itself an iterative procedure in which the current
data determines the drugs to be tested during the next round. For their feature
set, the researchers chose the (rather ambiguous) “DuPont Pharmaceuticals...shape
feature and pharmacophore descriptors.” By the eighth round of testing, the SVM
classifier had correctly identified 93% of the active compounds and nearly 100% of
the inactives, which outperformed (to varying extents) the voted perceptron, Bayes
point machine, and k-nearest neighbor algorithms.

A different approach was taken by Bao and Sun, who used microarray data to
measure the expression recorded by a 1217 × 50 drug matrix and a 4864 × 50 gene
matrix for some set of hypothetically anticancer compounds[1]. As one would expect
after reading the previous section, SVMs performed admirably, exhibiting both high
specificity and sensitivity. However, the researchers also pointed out some drawbacks
of this method of classification: most notably, this method can identify only rela-
tionships which are present at the transcription level, which is only a fraction of all
the possible causal relationships. Furthermore, this supervised learning approach re-
quires previous (labeled) knowledge of drug mechanisms for the training data, which
is available for only a small fraction of potential compounds and genes. The former
issue is specific to the methodology of this experiment; the latter is symptomatic of a
general problem with support vector machines and supervised learning, namely that
we require reliably labeled data to produce reliably label data. In this instance, it is
possible that some of the semi-supervised learning techniques from previous sections,
e.g. cluster kernels, could help to alleviate this issue.

5 Implementations

The descriptions from previous sections allude occasionally to arguably the biggest
drawback of support vector machines, namely that training them can be time- and
space-intensive, even for moderate input sets. Consequently, the optimization algo-
rithm which underlies the training procedure is itself an area of active research, and
faster and faster convergence is constantly being achieved.

Some techniques for improving the convergence of the algorithm make heuristic
compromises and sacrifice some classification accuracy for more reasonable training
time. One recent such implementation, published by Kramer et al. in May 2009,
employs bit reduction in order to reduce the complexity of the input data[22]. More
specifically, the data is first normalized by multiplying by some Z large enough that
a sufficient number of digits from each input value are contained in the integer part
of Z ∗ v. We then perform bit reduction on each value of I(v) = int(Z ∗ v) until
the desired compression factor is reached. As nearby training examples are merged
into the same bin, it is important to keep track of how many belong in each category.
Intuitively, if we had very many close values and a few outliers, then merging the close
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values without somehow re-weighting them would greatly bias the resulting classifier
towards those outliers. The resulting optimization problem is very similar to the
standard SVM mathematical program, but its dimensionality is greatly reduced, and
thus convergence is greatly facilitated. Using the sample problem of image recognition
(specifically, identifying plankton), the classifier went from 89.6% accuracy and 24.3s
training time with no compression to 84.5% accuracy and 4s training time. For a
small drop in accuracy, we receive an enormous reduction in training time, and it
is quite possible that the same compression schemes could be used in conjunction
with the algorithms from previous sections in order to greatly expand the variety of
training examples.

Other schemes, such as those of Collobert et al. and Huang et al., attempt to
partition the training process into a number of smaller cases, which reduces the di-
mensionality and lends itself to paralellization[12][16]. Collobert et al. produce N
distinct classifiers, each based on m/N training examples, and solving a related opti-
mization problem that can be thought of as minimizing the sum of the squared errors
of each of the N classifiers. Huang et al., by comparison, solve for each of the N
classifiers normally, and then use a gate network to form a weighted average of the
predictions of each classifier, resulting in one final prediction. These two papers have
been cited by numerous computational biology researchers, which seems to indicate
that these methods are as applicable to the biological sciences as they are to other
classic machine learning problems.

One final SVM innovation worth mentioning is the SVM-Fold algorithm, released
in 2007 by Melvin et al.[27]. This algorithm was constructed with protein classification
in mind, and is designed to avoid the inaccuracies and inefficiencies inherent in the
standard “one-versus-all” classification method. In particular, the training is done
using an “adaptive multi-class codes algorithm,” which uses a weighted combination
of one-versus-all classifiers to take advantage of the dependence between the classifier
results and leverage it towards improving the predictions of the ultimate aggregate
classifier. The kernel itself is a string kernel based on PSI-BLAST profiles, and
the resulting predictor outperforms both PSI-BLAST and standard one-versus-all
SVM classifiers. More importantly, SVM-Fold has an easy-to-use public web interface
available at http://svm-fold.c2b2.columbia.edu, which could help speed adoption of
SVM methods among the bioinformatics community (hence its placement here, rather
than in Section 3.1).

6 Conclusion

The previous examples, along with many others, make a strong case for the impor-
tance and effectiveness of support vector machine classifiers in computational biology.
SVMs have a number of distinct advantages over other statistical classification models,
including low bias, high customizability due to numerous possible choices of kernels
and feature models, and generally low generalization error. They also have obvious
drawbacks, most notably the influence of the curse of dimensionality and the generally
slow training speed. Recent developments have demonstrated that there is some hope
of conquering these obstacles, even without unforseen advances in computing power.
Other related algorithms which may gain popularity in the future include support
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vector regression (see [28]), which has been employed sparingly but with impressive
results in computational biology, and semi-supervised classification algorithms such
as cluster kernels, which are able to make use of the increasingly massive quantity of
unclassified data available to researchers. But even as things stand today, support
vector machines represent state-of-the-art methods for solving many of computational
biology’s largest and most complex problems.
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